Left invariant Randers metrics on the 3-dimensional Heisenberg group

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homogeneous Geodesics of Left Invariant Randers Metrics on a Three-Dimensional Lie Group

In this paper we study homogeneous geodesics in a three-dimensional connected Lie group G equipped with a left invariant Randers metric and investigates the set of all homogeneous geodesics. We show that there is a three-dimensional unimodular Lie group with a left invariant non-Berwaldian Randers metric which admits exactly one homogeneous geodesic through the identity element. Mathematics Sub...

متن کامل

Translation invariant surfaces in the 3-dimensional Heisenberg‎ ‎group

‎In this paper‎, ‎we study translation invariant surfaces in the‎ ‎3-dimensional Heisenberg group $rm Nil_3$‎. ‎In particular‎, ‎we‎ ‎completely classify translation invariant surfaces in $rm Nil_3$‎ ‎whose position vector $x$ satisfies the equation $Delta x = Ax$‎, ‎where $Delta$ is the Laplacian operator of the surface and $A$‎ ‎is a $3 times 3$-real matrix‎.

متن کامل

translation invariant surfaces in the 3-dimensional heisenberg‎ ‎group

‎in this paper‎, ‎we study translation invariant surfaces in the‎ ‎3-dimensional heisenberg group $rm nil_3$‎. ‎in particular‎, ‎we‎ ‎completely classify translation invariant surfaces in $rm nil_3$‎ ‎whose position vector $x$ satisfies the equation $delta x = ax$‎, ‎where $delta$ is the laplacian operator of the surface and $a$‎ ‎is a $3 times 3$-real matrix‎.

متن کامل

On dually flat Randers metrics

The notion of dually flat Finsler metrics arise from information geometry. In this paper, we will study a special class of Finsler metrics called Randers metrics to be dually flat. A simple characterization is provided and some non-trivial explicit examples are constructed. In particular, We will show that the dual flatness of a Randers metric always arises from that of some Riemannian metric b...

متن کامل

On Fully Nonlinear Cr Invariant Equations on the Heisenberg Group

In this paper we provide a characterization of second order fully nonlinear CR invariant equations on the Heisenberg group, which is the analogue in the CR setting of the result proved in the Euclidean setting by A. Li and the first author in [21]. We also prove a comparison principle for solutions of second order fully nonlinear CR invariant equations defined on bounded domains of the Heisenbe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publicationes Mathematicae Debrecen

سال: 2014

ISSN: 0033-3883

DOI: 10.5486/pmd.2014.5894